Are you seeing this error when submitting a job to YARN? Are you launching an Oozie workflow with a Spark action? You might be hitting this issue!
Error starting action [spark-e27e]. ErrorType [TRANSIENT], ErrorCode [JA009], Message [JA009: org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException: Invalid resource request, requested memory < 0, or requested memory > max configured, requestedMemory=1536, maxMemory=1024
at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.validateResourceRequest(SchedulerUtils.java:203)
at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.validateAndCreateResourceRequest(RMAppManager.java:377)
at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.createAndPopulateNewRMApp(RMAppManager.java:320)
at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.submitApplication(RMAppManager.java:273)
at org.apache.hadoop.yarn.server.resourcemanager.ClientRMService.submitApplication(ClientRMService.java:574)
at org.apache.hadoop.yarn.api.impl.pb.service.ApplicationClientProtocolPBServiceImpl.submitApplication(ApplicationClientProtocolPBServiceImpl.java:213)
at org.apache.hadoop.yarn.proto.ApplicationClientProtocol$ApplicationClientProtocolService$2.callBlockingMethod(ApplicationClientProtocol.java:403)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:619)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1060)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2039)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2035)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1671)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2033)
]
[
]1
Your job is asking for more memory than what YARN is authorizing him to do. One way to fix it is to up these parameters to more like 2000:
yarn.scheduler.maximum-allocation-mb
yarn.nodemanager.resource.memory-mb
Have any questions? Feel free to contact us on hue-user or @gethue!