Use the Spark Action in Oozie

Use the Spark Action in Oozie

Update September 2016: this post is getting replaced by

Hue offers a notebook for Hadoop and Spark, but here are the following steps that will successfully guide you to execute a Spark Action from the Oozie Editor.

Run job in Spark Local Mode

To submit a job locally, Spark Master can be one of the following

  • local: Run Spark locally with one worker thread.
  • local[k]: Run Spark locally with K worker threads.
  • local[*]: Run Spark with as many worker threads as logical cores on your machine.

Insert the Mode as client and provide local/HDFS jar path in Jars/py field. You would also need to specify the App name, Main class to the Jar and arguments (if any) by clicking on the ARGUMENTS+ button.


Note: Spark’s local mode doesn’t run with Kerberos.

Run job on Yarn

To submit a job on Yarn Cluster, you need to change Spark Master to yarn-cluster, Mode to cluster and give the compete HDFS path for the Jar in Jars/py files field.


Similarly, to submit a job on yarn-client, change Spark Master to yarn-clientMode to client, keeping rest of the fields same as above. Jar path can be local or HDFS.



Additional Spark-action properties can be set by clicking the settings button at the top right corner before you submit the job.


Note: If you see the error “Required executor memory (xxxxMB) is above the max threshold…”, please increase ‘yarn.scheduler.maximum-allocation-mb’ in Yarn config and restart Yarn service from CM.

Next version is going to include HUE-2645, that will make the UI simple and more intuitive. As usual feel free to comment on the hue-user list or @gethue!